网络流入门—用于最大流的Dinic算法

“网络流博大精深”—sideman语

Drainage Ditches
一个基本的网络流问题

感谢WHD的大力支持

最早知道网络流的内容便是最大流问题,最大流问题很好理解:

解释一定要通俗!

如右图所示,有一个管道系统,节点{1,2,3,4},有向管道{A,B,C,D,E},即有向图一张. [1]是源点,有无限的水量,[4]是汇点,管道容量如图所示.试问[4]点最大可接收的水的流量?

这便是简单的最大流问题,显然[4]点的最大流量为50

死理性派请注意:流量是单位时间内的,总可以了吧!

然而对于复杂图的最大流方法是什么呢,有EK,Dinic,SAP,etc.下面介绍Dinic算法(看代码的直接点这)

Dinic 算法

Dinic算法的基本思路:
  1. 根据残量网络计算层次图。
  2. 在层次图中使用DFS进行增广直到不存在增广路
  3. 重复以上步骤直到无法增广

引自NOCOW,相当简单是吧…

小贴士:

一般情况下在Dinic算法中,我们只记录某一边的剩余流量.

  • 残量网络:包含反向弧的有向图,Dinic要循环的,每次修改过的图都是残量网络,
  • 层次图:分层图,以[从原点到某点的最短距离]分层的图,距离相等的为一层,(比如上图的分层为{1},{2,4},{3})
  • DFS:这个就不用说了吧…
  • 增广  :在现有流量基础上发现新的路径,扩大发现的最大流量(注意:增加量不一定是这条路径的流量,而是新的流量与上次流量之差)
  • 增广路:在现有流量基础上发现的新路径.(快来找茬,和上一条有何不同?)
  • 剩余流量:当一条边被增广之后(即它是增广路的一部分,或者说增广路通过这条边),这条边还能通过的流量.
  • 反向弧:我们在Dinic算法中,对于一条有向边,我们需要建立另一条反向边(弧),当正向(输入数据)边剩余流量减少I时,反向弧剩余流量增加I
Comzyh的较详细解释(流程) :


Dinic动画演示
  1. 用BFS建立分层图  注意:分层图是以当前图为基础建立的,所以要重复建立分层图
  2. 用DFS的方法寻找一条由源点到汇点的路径,获得这条路径的流量I 根据这条路径修改整个图,将所经之处正向边流量减少I,反向边流量增加I,注意I是非负数
  3. 重复步骤2,直到DFS找不到新的路径时,重复步骤1

注意(可以无视):

  • Dinic(其实其他的好多)算法中寻找到增广路后要将反向边增加I
  • Dinic中DFS时只在分层图中DFS,意思是说DFS的下一个节点的Dis(距源点的距离)要比自己的Dis大1,例如在图1中第一个次DFS中,1->2->4 这条路径是不合法的,因为Dis[2]=1;Dis[4]=1;
  • 步骤2中“获得这条路径的流量I “实现:DFS函数有参量low,代表从源点到现在最窄的(剩余流量最小)的边的剩余流量,当DFS到汇点是,Low便是我们要的流量I
对于反向弧(反向边)的理解:

这一段不理解也不是不可以,对于会写算法没什么帮助,如果你着急,直接无视即可.
先举一个例子(如右图):

必须使用反向弧的流网络
必须使用反向弧的流网络

在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4->2反向弧的话,则无法进一步增广,最终答案为2,显然是不对的,然而如果建立了反向弧4->2,则第二次能进行1->3->4->2->5->6的增广,最大流为3.

Comzyh对反向弧的理解可以说是”偷梁换柱“,请仔细阅读:在上面的例子中,我们可以看出,最终结果是1->2->5->6和1->2->4->6和1->3->4->6.当增广完1->2->4->5(代号A)后,在增广1->3->4->2->5->6(代号B),相当于将经过节点2的A流从中截流1(总共是2)走2->5>6,而不走2->4>6了,同时B流也从节点4截流出1(总共是1)走4->6而不是4->2->5->6,相当于AB流做加法.

简单的说反向弧为今后提供反悔的机会,让前面不走这条路而走别的路.

Alwa同学非要我给他的文章加一个链接,大家可以看看他的文章: 有关网络流中的反向弧和增广路

Dinic算法的程序实现

最大流算法一直有一个入门经典题:POJ 1273 或者是UCACO 4_2_1 来自NOCOW(中文) 这两个是同一个题

给出这道题的代码

另一道题目是 POJ 1459 使用邻接表,采用当前弧优化

原创文章,转载请注明(最好把图片带走): 转载自Comzyh的博客

本文链接地址: 网络流入门—用于最大流的Dinic算法

20 Responses

  1. 为什么我测试了一组数据出现了错误
    10 4
    1 2 0
    2 1 1
    1 3 1
    3 1 0
    2 3 0
    3 2 1
    2 4 1
    4 2 0
    3 4 0
    4 3 1
    正确的应该是2,结果显示1
    是不是反向边没考虑或者反向边没起作用

发表评论